118 research outputs found

    Acetylation Regulates WRN Catalytic Activities and Affects Base Excision DNA Repair

    Get PDF
    Background: The Werner protein (WRN), defective in the premature aging disorder Werner syndrome, participates in a number of DNA metabolic processes, and we have been interested in the possible regulation of its function in DNA repair by post-translational modifications. Acetylation mediated by histone acetyltransferases is of key interest because of its potential importance in aging, DNA repair and transcription. Methodology/Principal Findings: Here, we have investigated the p300 acetylation mediated changes on the function of WRN in base excision DNA repair (BER). We show that acetylation of WRN increases in cells treated with methyl methanesulfonate (MMS), suggesting that acetylation of WRN may play a role in response to DNA damage. This hypothesis is consistent with our findings that acetylation of WRN stimulates its catalytic activities in vitro and in vivo, and that acetylated WRN enhances pol b-mediated strand displacement DNA synthesis more than unacetylated WRN. Furthermore, we show that cellular exposure to the histone deacetylase inhibitor sodium butyrate stimulates long patch BER in wild type cells but not in WRN depleted cells, suggesting that acetylated WRN participates significantly in this process. Conclusion/Significance: Collectively, these results provide the first evidence for a specific role of p300 mediated WRN acetylation in regulating its function during BER

    Can changes in malaria transmission intensity explain prolonged protection and contribute to high protective efficacy of intermittent preventive treatment for malaria in infants?

    Get PDF
    BACKGROUND: Intermittent preventive (or presumptive) treatment of infants (IPTi), the administration of a curative anti-malarial dose to infants whether or not they are known to be infected, is being considered as a new strategy for malaria control. Five of the six trials using sulphadoxine-pyrimethamine (SP) for IPTi showed protective efficacies (PEs) against clinical malaria ranging from 20.1 - 33.3% whilst one, the Ifakara study, showed a protective efficacy of 58.6%. MATERIALS AND METHODS: The possible mechanisms that could explain the differences in the reported PE of IPTi were examined by comparing output from a mathematical model to data from the six published IPTi trials. RESULTS: Under stable transmission, the PE of IPTi predicted by the model was comparable with the observed PEs in all but the Ifakara study (ratio of the mean predicted PE to that observed was 1.02, range 0.39 - 1.59). When a reduction in the incidence of infection during the study was included in the model, the predicted PE of IPTi increased and extended into the second year of life, as observed in the Ifakara study. CONCLUSION: A decrease in malaria transmission during the study period may explain part of the difference in observed PEs of IPTi between sites and the extended period of protection into the second year of life observed in the Ifakara study. This finding of continued benefit of interventions in settings of decreasing transmission may explain why rebound of clinical malaria was absent in the large scale trials of insecticide-treated bed nets

    Nucleolin Inhibits G4 Oligonucleotide Unwinding by Werner Helicase

    Get PDF
    The Werner protein (WRNp), a member of the RecQ helicase family, is strongly associated with the nucleolus, as is nucleolin (NCL), an important nucleolar constituent protein. Both WRNp and NCL respond to the effects of DNA damaging agents. Therefore, we have investigated if these nuclear proteins interact and if this interaction has a possible functional significance in DNA damage repair.Here we report that WRNp interacts with the RNA-binding protein, NCL, based on immunoprecipitation, immunofluorescent co-localization in live and fixed cells, and direct binding of purified WRNp to nucleolin. We also map the binding region to the C-terminal domains of both proteins. Furthermore, treatment of U2OS cells with 15 Β΅M of the Topoisomerase I inhibitor, camptothecin, causes the dissociation of the nucleolin-Werner complex in the nucleolus, followed by partial re-association in the nucleoplasm. Other DNA damaging agents, such as hydroxyurea, Mitomycin C, and aphidicolin do not have these effects. Nucleolin or its C-terminal fragment affected the helicase, but not the exonuclease activity of WRNp, by inhibiting WRN unwinding of G4 tetraplex DNA structures, as seen in activity assays and electrophoretic mobility shift assays (EMSA).These data suggest that nucleolin may regulate G4 DNA unwinding by WRNp, possibly in response to certain DNA damaging agents. We postulate that the NCL-WRNp complex may contain an inactive form of WRNp, which is released from the nucleolus upon DNA damage. Then, when required, WRNp is released from inhibition and can participate in the DNA repair processes

    Mechanism of Werner DNA Helicase: POT1 and RPA Stimulates WRN to Unwind beyond Gaps in the Translocating Strand

    Get PDF
    WRN belongs to the RecQ family of DNA helicases and it plays a role in recombination, replication, telomere maintenance and long-patch base excision repair. Here, we demonstrate that WRN efficiently unwinds DNA substrates containing a 1-nucleotide gap in the translocating DNA strand, but when the gap size is increased to 3-nucleotides unwinding activity significantly declines. In contrast, E. coli UvrD (3β€²β†’5β€² helicase), which recognizes nicks in DNA to initiate unwinding, does not unwind past a 1-nucleotide gap. This unique ability of WRN to bypass gaps supports its involvement in DNA replication and LP-BER where such gaps can be produced by glycosylases and the apurinic/apyrimidinic endonuclease 1 (APE1). Furthermore, we tested telomere repeat binding factor 2 (TRF2), both variants 1 and 2 of protector of telomeres 1 (POT1v1 and POT1v2) and RPA on telomeric DNA substrates containing much bigger gaps than 3-nucleotides in order to determine whether unwinding could be facilitated through WRN-protein interaction. Interestingly, POT1v1 and RPA are capable of stimulating WRN helicase on gapped DNA and 5β€²-overhang substrates, respectively

    Duration of Protection against Malaria and Anaemia Provided by Intermittent Preventive Treatment in Infants in Navrongo, Ghana

    Get PDF
    BACKGROUND: Intermittent preventive treatment for malaria in Infants (IPTi) has been shown to give effective and safe protection against malaria. It has been suggested that IPTi might have long-lasting beneficial effects but, in most settings, the protection provided by IPTi appears to be short-lived. Knowledge of the duration of protection given by IPTi would help interpret the results of existing trials and suggest optimal delivery schedules for IPTi. This study investigated how the protective efficacy of IPTi against malaria and anaemia changes over time. METHODS AND FINDINGS: A secondary analysis of data from a cluster-randomised, placebo-controlled trial of IPTi using sulfadoxine-pyrimethamine (SP) in Ghana was conducted. In this trial IPTi was given to 2485 infants at 3, 4, 9 and 12 months of age; children remained in follow-up until two years of age. Poisson regression with a random effect to adjust for the cluster-randomised design was used to determine protective efficacy of IPTi against clinical malaria and anaemia in defined time strata following administration of IPTi. Analysis of first-or-only clinical malaria episode following the individual IPTi doses showed that some protection against malaria lasted between 4 to 6 weeks. A similar pattern was seen when the incidence of all malaria episodes up to 2 years of age was analysed in relation to the most recent IPT, by pooling the incidence of malaria after the individual IPTi doses. Protective efficacy within four weeks of IPTi was 75.2% (95% CI: 66-82) against malaria, 78.9% (95% CI: 69-86) against high parasite density malaria, and 93.8% (95% CI: 73-99) against anaemia. Protection against these outcomes was short-lived, with evidence of any effect lasting for only 6, 6 and 4 weeks respectively. Protection in children who were parasitaemic when receiving IPTi appeared to be of shorter duration than in uninfected children. There was no evidence of any benefit of IPTi after the immediate period following the IPTi doses. CONCLUSIONS: Intermittent preventive treatment provides considerable protection against malaria and anaemia for short periods, even in an area of intense seasonal transmission. Due to the relatively short duration of protection provided by each dose of IPTi, this treatment will be of most benefit when delivered at the time of peak malaria incidence

    Targeted Gene Panel Sequencing for Early-onset Inflammatory Bowel Disease and Chronic Diarrhea

    Get PDF
    Background: In contrast to adult-onset inflammatory bowel disease (IBD), where many genetic loci have been shown to be involved in complex disease etiology, early-onset IBD (eoIBD) and associated syndromes can sometimes present as monogenic conditions. As a result, the clinical phenotype and ideal disease management in these patients often differ from those in adult-onset IBD. However, due to high costs and the complexity of data analysis, high-throughput screening for genetic causes has not yet become a standard part of the diagnostic work-up of eoIBD patients. Methods: We selected 28 genes of interest associated with monogenic IBD and performed targeted panel sequencing in 71 patients diagnosed with eoIBD or early-onset chronic diarrhea to detect causative variants. We compared these results to whole-exome sequencing (WES) data available for 25 of these patients. Results: Target coverage was significantly higher in the targeted gene panel approach compared with WES, whereas the cost of the panel was considerably lower (approximately 25% of WES). Disease-causing variants affecting protein function were identified in 5 patients (7%), located in genes of the IL10 signaling pathway (3), WAS (1), and DKC1 (1). The functional effects of 8 candidate variants in 5 additional patients (7%) are under further investigation. WES did not identify additional causative mutations in 25 patients. Conclusions: Targeted gene panel sequencing is a fast and effective screening method for monogenic causes of eoIBD that should be routinely established in national referral centers.info:eu-repo/semantics/publishedVersio

    From old organisms to new molecules: integrative biology and therapeutic targets in accelerated human ageing

    Get PDF
    Understanding the basic biology of human ageing is a key milestone in attempting to ameliorate the deleterious consequences of old age. This is an urgent research priority given the global demographic shift towards an ageing population. Although some molecular pathways that have been proposed to contribute to ageing have been discovered using classical biochemistry and genetics, the complex, polygenic and stochastic nature of ageing is such that the process as a whole is not immediately amenable to biochemical analysis. Thus, attempts have been made to elucidate the causes of monogenic progeroid disorders that recapitulate some, if not all, features of normal ageing in the hope that this may contribute to our understanding of normal human ageing. Two canonical progeroid disorders are Werner’s syndrome and Hutchinson-Gilford progeroid syndrome (also known as progeria). Because such disorders are essentially phenocopies of ageing, rather than ageing itself, advances made in understanding their pathogenesis must always be contextualised within theories proposed to help explain how the normal process operates. One such possible ageing mechanism is described by the cell senescence hypothesis of ageing. Here, we discuss this hypothesis and demonstrate that it provides a plausible explanation for many of the ageing phenotypes seen in Werner’s syndrome and Hutchinson-Gilford progeriod syndrome. The recent exciting advances made in potential therapies for these two syndromes are also reviewed

    Barrier-to-autointegration factor 1 (Banf1) regulates poly [ADP-ribose] polymerase 1 (PARP1) activity following oxidative DNA damage

    Get PDF
    The DNA repair capacity of human cells declines with age, in a process that is not clearly understood. Mutation of the nuclear envelope protein barrier-to-autointegration factor 1 (Banf1) has previously been shown to cause a human progeroid disorder, NΓ©stor–Guillermo progeria syndrome (NGPS). The underlying links between Banf1, DNA repair and the ageing process are unknown. Here, we report that Banf1 controls the DNA damage response to oxidative stress via regulation of poly [ADP-ribose] polymerase 1 (PARP1). Specifically, oxidative lesions promote direct binding of Banf1 to PARP1, a critical NAD-dependent DNA repair protein, leading to inhibition of PARP1 auto-ADP-ribosylation and defective repair of oxidative lesions, in cells with increased Banf1. Consistent with this, cells from patients with NGPS have defective PARP1 activity and impaired repair of oxidative lesions. These data support a model whereby Banf1 is crucial to reset oxidative-stress-induced PARP1 activity. Together, these data offer insight into Banf1-regulated, PARP1-directed repair of oxidative lesions

    Effects of the TLR2 Agonists MALP-2 and Pam3Cys in Isolated Mouse Lungs

    Get PDF
    Background: Gram-positive and Gram-negative bacteria are main causes of pneumonia or acute lung injury. They are recognized by the innate immune system via toll-like receptor-2 (TLR2) or TLR4, respectively. Among all organs, the lungs have the highest expression of TLR2 receptors, but little is known about the pulmonary consequences of their activation. Here we studied the effects of the TLR2/6 agonist MALP-2, the TLR2/1 agonist Pam 3Cys and the TLR4 agonist lipopolysaccharide (LPS) on pro-inflammatory responses in isolated lungs. Methodology/Principal Findings: Isolated perfused mouse lungs were perfused for 60 min or 180 min with MALP-2 (25 ng/ mL), Pam3Cys (160 ng/mL) or LPS (1 mg/mL). We studied mediator release by enzyme linked immunosorbent assay (ELISA), the activation of mitogen activated protein kinase (MAPK) and AKT/protein kinase B by immunoblotting, and gene induction by quantitative polymerase chain reaction. All agonists activated the MAPK ERK1/2 and p38, but neither JNK or AKT kinase. The TLR ligands upregulated the inflammation related genes Tnf, Il1b, Il6, Il10, Il12, Ifng, Cxcl2 (MIP-2a) and Ptgs2. MALP-2 was more potent than Pam 3Cys in inducing Slpi, Cxcl10 (IP10) and Parg. Remarkable was the strong induction of Tnc by MALP2, which was not seen with Pam 3Cys or LPS. The growth factor related genes Areg and Hbegf were not affected. In addition, all three TLR agonists stimulated the release of IL-6, TNF, CXCL2 and CXCL10 protein from the lungs

    Rhabdovirus Matrix Protein Structures Reveal a Novel Mode of Self-Association

    Get PDF
    The matrix (M) proteins of rhabdoviruses are multifunctional proteins essential for virus maturation and budding that also regulate the expression of viral and host proteins. We have solved the structures of M from the vesicular stomatitis virus serotype New Jersey (genus: Vesiculovirus) and from Lagos bat virus (genus: Lyssavirus), revealing that both share a common fold despite sharing no identifiable sequence homology. Strikingly, in both structures a stretch of residues from the otherwise-disordered N terminus of a crystallographically adjacent molecule is observed binding to a hydrophobic cavity on the surface of the protein, thereby forming non-covalent linear polymers of M in the crystals. While the overall topology of the interaction is conserved between the two structures, the molecular details of the interactions are completely different. The observed interactions provide a compelling model for the flexible self-assembly of the matrix protein during virion morphogenesis and may also modulate interactions with host proteins
    • …
    corecore